Spiders as Robust Point Descriptors
نویسندگان
چکیده
This paper introduces a new operator to characterize a point in an image in a distinctive and invariant way. The robust recognition of points is a key technique in computer vision: algorithms for stereo correspondence, motion tracking and object recognition rely heavily on this type of operator. The goal in this paper is to describe the salient point to be characterized by a constellation of surrounding anchor points. Salient points are the most reliably localized points extracted by an interest point operator. The anchor points are multiple interest points in a visually homogenous segment surrounding the salient point. Because of its appearance, this constellation is called a spider. With a prototype of the spider operator, results in this paper demonstrate how a point can be recognized in spite of significant image noise, inhomogeneous change in illumination and altered perspective. For an example that requires a high performance close to object / background boundaries, the prototype yields better results than David Lowe’s SIFT operator.
منابع مشابه
A new shape retrieval method using the Group delay of the Fourier descriptors
In this paper, we introduced a new way to analyze the shape using a new Fourier based descriptor, which is the smoothed derivative of the phase of the Fourier descriptors. It is extracted from the complex boundary of the shape, and is called the smoothed group delay (SGD). The usage of SGD on the Fourier phase descriptors, allows a compact representation of the shape boundaries which is robust ...
متن کاملA comprehensive review of 3D point cloud descriptors
The introduction of inexpensive 3D data acquisition devices has promisingly facilitated the wide availability and popularity of 3D point cloud, which attracts more attention on the effective extraction of novel 3D point cloud descriptors for accurate and efficient of 3D computer vision tasks. However, how to develop discriminative and robust feature descriptors from various point clouds remains...
متن کاملA performance evaluation of local descriptors - Computer Vision and Pattern Recognition, 2003. Proceedings. 2003 IEEE Computer Society Conference
In this paper we compare the performance of interest point descriptors. Many different descriptors have been proposed in the literature. However, it is unclear which descriptors are more appropriate and how their performance depends on the interest point detector. The descriptors should be distinctive and at the same time robust to changes in viewing conditions as well as to errors of the point...
متن کاملA robust wavelet based profile monitoring and change point detection using S-estimator and clustering
Some quality characteristics are well defined when treated as response variables and are related to some independent variables. This relationship is called a profile. Parametric models, such as linear models, may be used to model profiles. However, in practical applications due to the complexity of many processes it is not usually possible to model a process using parametric models.In these cas...
متن کاملPerformance evaluation of block-based copy- move image forgery detection algorithms
Copy-move forgery is a particular type of distortion where a part or portions of one image is/are copied to other parts of the same image. This type of manipulation is done to hide a particular part of the image or to copy one or more objects into the same image. There are several methods for detecting copy-move forgery, including block-based and key point-based methods. In this paper, a method...
متن کامل